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Is neutrino its own antiparticle?
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Energy resolution is key!

T1/2 ~ 1020 y T1/2 > 1026 y



“Vanilla” light-Majorana mass mechanism
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Sensitivity
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Need:
• low background (b⬇)
• high detector energy resolution (ΔE⬇)
• large mass of ββ decaying isotope (M⬆)
• patience - count for a long time (T⬆)



Experimental background target
• Signal expected in real-time experiments 

• The SNO heavy water D2O was purified to have ~10-15 (g 232Th)/(g 
D2O).  The KamLAND liquid scintillator was purified to even higher 
purity. 

Type of experiment Signal Detection (Background) rate

SNO
Solar neutrino experiment

(1998-2006)
Cherenkov light from e- ~15 events t-1 d-1

LUX
WIMP search

Scintillation light and 
ionization from nuclear recoils (~15 events t-1 d-1)

Future 76Ge
neutrinoless double beta 

decay search
e- in Ge diode detectors (~0.1 event t-1 y-1)



Next-Generation 0νββ Experiments

T1/2  (0ν)
Signal rate
[cts/(ton-Ge y)

1025 y 500

5 x 1026 10

5 x 1027 1

> 1029 < 0.05

• low background b ~ 0.1 count/(ton-Ge yr) in ROI

Detwiler 2015

Current gen:  
O(1026 y)



Keeping it clean
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KamLAND-ZEN  
clean balloon construction 

(K. Inoue - DBD16)



Energy resolution ΔE and 2𝜈ββ background

Avignone et al., NJP 7 (2005) 6



Background Comparison
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Background Comparison
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source = detector
discrete detectors Best energy resolution
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Discrete detectors
• Pros:

• high detection efficiency (source = detector)
• (usually) high energy resolution
• scaling of 0νββ rate as systematic check (install detectors with 

different levels of isotope enrichment)
• use neighboring detectors as veto (“granularity cut”)

• Cons:
• extreme care in handling necessary
• impossible / difficult to purify during operation
• per-unit-mass detector cost could be high: isotopic enrichment + 

detector fabrication + material loss during fabrication

12



The ALARA principle
• Choose radiopure materials  
• Keep hot stuff away from active detector volume

Homogeneous, self shielding, fiducial volume cut

Ex: KamLAND-ZEN



The ALARA principle
• Choose radiopure materials  
• Keep hot stuff away from active detector volume

Ex: MAJORANA DEMONSTRATOR (76Ge): Ge detectors in vacuum

~2.2 m



The ALARA principle
• MAJORANA DEMONSTRATOR background budget:

MJD goal: 3 cts / 4 keV / t-y  
(scale to 1 cts / 4 keV / t-y in large-scaleGe)

Based on achieved assays of materials 
When UL, use UL as the contribution
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The ALARA principle
• MAJORANA DEMONSTRATOR background budget:

MJD goal: 3 cts / 4 keV / t-y  
(scale to 1 cts / 4 keV / t-y in large-scaleGe)

Based on achieved assays of materials 
When UL, use UL as the contribution

• cleaner materials
• active veto

• reduce exposure  
to cosmic-ray

• underground  
production

• better shielding
• Rn control

• deeper lab
• better shielding



Example:

• Cosmogenic activation
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MJD Electroformed Cu



Material transport (GERDA)

Majorovits 2014



Cosmogenic backgrounds

MAJORANA DEMONSTRATORGERDA

• Avoid re-growing crystal, re-work detectors (no shielding)
• Minimize transport (long exposure with some / no shielding)



Cosmogenic backgrounds at low energy

20

EDELWEISS-II 
JCAP11(2013)067

CDEX 
PR D93 092003

Low background in low-energy regime - extended low-energy physics  
program to search for physics beyond the Standard Model.

MJD 478 kg-d data



Pseudo-scale coupling results - MJD
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Example:

• Clean materials near/in the active volume

22



Radiopurity of typical electronics 
components

1 μBq ≈ 0.1 / day

500 MΩ SMD resistor used by GERDA

Cattadori, LRT 2015



Low-Background Electronics Development

JFET aGe film (feedback resistor; 
~20 GΩ at 85 K)

Fused silica

Cable

~2cm

Current state-of-the-art: MJD low-mass front-end

•  Background:  < 1 count/t/y in 4-keV ROI

Example of a future concept: Low-
mass low-background flexible 
circuitry
Thermal sensor 
on a flexible 
parylene 
substrate

• Technologies for future experiments:

• More signal readout circuitry (amplification) as 
close to the detector as possible [ASICs]

• Flexibility of the form factor in these circuits 
  [flexible substrate]

• Ultra-low background material development

• Ability to run at very low temperature (hence lower 
thermal noise)A. Dhar et al., A Low-Background Parylene  

Temperature Sensor, JINST 10 P12002 (2015).

P. Barton et al., Low-noise low-mass front end electronics for  
low-background physics experiments using germanium detectors.   
IEEE Nucl. Sci. Symp. Conf. Rec. 2011, 1976  (2011).

Full board assays: ~2-3x higher in background



Low-Background Electronics Development

P. Barton et al., Ultra-low noise mechanically cooled germanium detector.   
Nucl. Instr. Meth A 812, 17 (2016).

cf. MJD front-end: 85 eV-FWHM at 80K 
        MJD full module: ~150-180 eV FWHM



• For discrete detector systems, very likely that special production runs are 
required.  MJD contracted Axon’ in France to make the “picocoax” cable 

• Additional testing, cleaning in ultrasonic bath and drying between 
production steps (conductor prep, inner dielectric extrusion, shielding, 
jacket extrusion).  

Coaxial Cables - MJD

HV Cable Technique Th
(c/ROI/t/y)

U
(c/ROI/t/y)

Projection Simulation & assay <0.02 <0.06

Axon’ - Run 1
(QA issue at factory - 

no cleaning steps)
ICPMS 1.1 16.5

Axon’ - Run 2 ICPMS & Gamma <0.004 <0.081

Goal: << 1 c/ROI/t/y

Site visits for quality assurance is essential



• The cables were stored in dry N2 environment until they were being used.   
• Room 222Rn can stick to the outer jacket if not stored properly

Coaxial Cables - MJD

Proper clean storage of components is essential



Example:

• Background rejection

28



• Reject: 
• backgrounds intrinsic to the detectors and  
• external backgrounds - cosmic rays and the veto itself

Active Veto

Ex: GERDA (76Ge): Ge detectors immersed in LAr



GERDA-I background



GERDA-I background

Detector intrinsic



GERDA-I background

On detector  
surfaceDetector intrinsic



GERDA-I background

On detector  
surfaceDetector intrinsic

“stuff nearby”



GERDA-I background

LAr veto
On detector  

surfaceDetector intrinsic

“stuff nearby”



GERDA-I background

LAr veto
On detector  

surfaceDetector intrinsic

“stuff nearby”

42Ar (t1/2=33y) → 42K(t1/2=12.3h, Q=3.5MeV)β



GERDA-II implementation of LAr veto

Agostini (Neutrino-2016)



GERDA background rejection

32



GERDA background rejection

33

A/E: Detector pulse-shape discrimination parameter



Summary
• The DM and ββ R&D topics have a lot in common, even 

though the energy regimes of their signal region of 
interest are different.

• Similar background sources:
• cosmic-ray
• material impurities 
• Rn and other environmental radiation
• contamination from handling, processing, and storage

• ββ community has achieved a background index of O(1 
ct/t/y/ROI).  Efforts to get to 0.1 ct/t/y/ROI underway.

• Opportunities to share resources and collaborate 
(example: radiopurity.org).

34

http://radiopurity.org


radiopurity.org

 A project adopted by the international low-background community 

 Data from European ILIAS database incorporated 
 Experiments are adding their radioassay results to this database 
J.C. Loach et al., A Database for Storing the Results of  Material Radio-purity Measurements 
Nucl. Instr. Meth. A839 (2016) 6-11 35





3-sigma discovery vs background

37 Detwiler 2015



90% CL sensitivity vs background

38 Detwiler 2015



CUORE (130Te bolometers) and beyond
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CUORE 130Te and beyond

40

near or on detector

Next-Gen: rejection via  
Cherenkov or scintillation light



The ALARA principle
• Choose radiopure materials  
• Keep hot stuff away from active detector volume

Ex: GERDA - Phase I

FE Box

Cattadori, LRT 2015



The ALARA principle
• GERDA Phase-I background results:

 Hard to shield components close to the detectors  
(e.g. front-end electronics and cables)

cl
os

e
fa

r



• GERDA Phase-1

Coaxial Cables - GERDA

[arXiv:1212.4067v1]

228Th: 1.1±0.5 mBq/kg  
238U < 59 mBq/kg 
Cu/PTFE 1 mm OD 
linear density = 2.7 g/m

Over an order of magnitude too radioactive for MJD



• GERDA Phase-1

Coaxial Cables - GERDA

[arXiv:1212.4067v1]

228Th: 1.1±0.5 mBq/kg  
238U < 59 mBq/kg 
Cu/PTFE 1 mm OD 
linear density = 2.7 g/m

Over an order of magnitude too radioactive for MJD 
• Silver-plated Cu is likely hot 
•  Scaling to a HV cable (5 kV DC rating) means even 

 higher activity



Other commercial options?

Mouser catalogue

Radiopurity concerns: 
• dye in the jacket  
• silver-plated copper alloy  

in braid and central conductor

It became clear that we needed to do a special production run



• FEP and PFA  
• have high dielectric strength (Dupont: 260 kV/mm) 
• are radiopure 

• The radiopurity of the Cu drives the background budget: 
• reduce OD of central conductor 
• reduce OD of inner dielectric 
• helical shield (instead of braid)

Coaxial Cables - MJD

Cu

dielectric



• Contracted Axon’ in France to make the “picocoax” cable

Coaxial Cables - MJD

Material Signal HV

1 central 
conductor Bare Cu 0.0762 mm 𝜙 0.152 mm 𝜙

2 inner 
dielectric FEP / PFA 0.254 mm 𝜙 0.77 mm 𝜙

3 helical shield Bare Cu AWG50 AWG50

4 jacket FEP / PFA 0.4 mm 𝜙 1.2 mm 𝜙

Linear mass density 0.4 g/m 3 g/m



Making connectors
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Technical Issue: Plug Design

• Cable connection: solder to tiny pins 

• Pins are held in vespel housing that also 
provides strain relief 

• Press-fit, keyed shell interface for ease of 
assembly in the glove box 

• Vacuum tests indicate no significant virtual 
leaks.   

• BeCu contact is too radioactive for MJD (~10 
cts/t/y).  Iterative prototyping to establish 
reliable connection during thermal cycling.  

• Full body ICPMS indicates the connectors are 
sufficiently clean for MJD



Solder

• “Typical clean solder”:  

• Low background ideas: 
• Roman Pb 
• Source clean solder (e.g. SnAg), use abietic acid as flux. 

  



PCB in low-background experiment

• CuFlon is cleaner than Kapton in U and Th, but it’s much worse in 40K



Processing PCBs

Cattadori, LRT 2015



Do other mechanisms tell us anything about 
(light) m(ν)?

L-R mixing

hm��i =
3X

i=1

��U2
eimi

��

“Vanilla” mass mechanism
L-R symmetric model

Heavy neutrino exchange

Doubly-charged Higgs triplet  
exchange

0νββ half-life may 
not yield any direct 
information about 
the neutrino mass.



[SuperNEMO, Eur. Phys. J. C 70 (2010) 927]

How to disentangle different (0νββ) mechanisms?

mass mechanism right-handed current 

• Exploit energy and angular distributions



How to disentangle different (0νββ) mechanisms?
• Exploit differences in different isotopes

Deppisch et al., Phys. Rev. Lett. 98, 232501 (2007)

• Exploit differences in 0νβ+β+ / 0νβ+EC 
• Exploit differences in first-excited and ground state transitions

Problem:  Need statistics



Complementarity to LHC / heavy flavor physics

• LNV via heavy right-handed neutrino exchange can be 
probed via 

Same sign:
Non-observation gives 
stringent limits on 
short-range WR 
mechanisms

Hirsch 2016
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What are the possibilities inside the black box?

Graphics from Hirsch 2016

Mass mechanism “Long-range” “Short-range”

ΔL = 2

+ +

GUT scale / seesaw LHC energy

0νββ allows us to probe the GUT scale
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